160 research outputs found

    Estimating individual muscle forces in human movement

    Get PDF
    If individual muscle forces could be routinely calculated in vivo, non-invasively, considerable insight could be obtained into the etiology of injuries and the training of muscle for rehabilitation and sport. As there are generally more muscles crossing a joint than there are degrees of freedom at the joint, determining the individual forces in the muscles crossing a joint is a non-trivial problem. This study focused on the development of the procedures necessary to estimate the individual muscle forces during a dumbell curl, and the measurement procedures required for the determination of the necessary input parameters. The procedures developed could easily be applied to other body movements. [Continues.

    Soft tissue motion influences skeletal loads during impacts

    Get PDF
    Soft tissue motion occurs as impulsive loads are applied to the skeletal system. It has been demonstrated that the wave like motion of these wobbling masses can reduce the loads acting on the musculoskeletal system. This is an important concept to consider, whether the loads acting on the musculoskeletal system are being determined using either inverse or direct dynamics

    The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings

    Get PDF
    The aim of this study was to determine the effects that soft tissue motion has on ground reaction forces, joint torques and joint reaction forces in drop landings. To this end a four body-segment wobbling mass model was developed to reproduce the vertical ground reaction force curve for the first 100 ms of landing. Particular attention was paid to the passive impact phase, while selecting most model parameters a priori, thus permitting examination of the rigid body assumption on system kinetics. A two-dimensional wobbling mass model was developed in DADS (version 9.00, CADSI) to simulate landing from a drop of 43 cm. Subject specific inertia parameters were calculated for both the rigid links and the wobbling masses. The magnitude and frequency response of the soft tissue of the subject to impulsive loading was measured and used as a criterion for assessing the wobbling mass motion. The model successfully reproduced the vertical ground reaction force for the first 100 ms of the landing with a peak vertical ground reaction force error of 1.2 % and root mean square errors of 5% for the first 15 ms and 12% for the first 40 ms. The resultant joint forces and torques were lower for the wobbling mass model compared with a rigid body model, up to nearly 50% lower, indicating the important contribution of the wobbling masses on reducing system loading

    Wobbling mass influence on impact ground reaction forces: A simulation model sensitivity analysis

    Get PDF
    To gain insight into joint loadings during impacts, wobbling mass models have been used. The aim of this study was to investigate the sensitivity of a wobbling mass model, of landing from a drop, to the model's parameters. A two-dimensional wobbling mass model was developed. Three rigid linked segments designed to represent the skeleton each had a second mass attached to them, via two translational non-linear spring dampers, representing the soft tissue. Model parameters were systematically varied one at a time and the effect this had on the peak vertical ground reaction force and segment kinematics was examined. Model output showed low sensitivity to most model parameters but was sensitive to the timing of joint torque initiation. Varying the heel pad stiffness in the range of stiffness values reported in the literature had the largest influence on the peak vertical ground reaction force. The analysis indicated that the more proximal body segments had a lower influence on peak vertical ground reaction force per unit mass than the segments nearer the contact point, 340 N/kg, 157 N/kg and 24 N/kg for the shank, thigh and trunk respectively. Model simulations were relatively insensitive to variations in the properties of the connection between the wobbling masses and the skeleton. Given the proviso that estimates for the other model parameters and joint torque activation timings lie in a realistic range, then if the goal is to examine the effects of the wobbling mass on the system this insensitivity is an advantage. If precise knowledge about the motion of the wobbling mass is of interest, however, more experimental work is required to determine precisely these model parameters

    The role of the heel pad and shank soft tissue during impacts: a further resolution of a paradox

    Get PDF
    The aim of this study was to test the hypothesis that by accounting for soft tissue motion of the lower leg during the impacts associated with in vivo testing, that the differences between in vivo and in vitro estimates of heel pad properties can be explained. To examine this a two-dimensional model of the shank and heel pad was developed using DADS. The model contained a heel pad element and a rigid skeleton to which was connected soft tissue which could move relative to the bone. Simulations permitted estimation of heel pad properties directly from heel pad deformations, and from the kinematics of an impacting pendulum. These two approaches paralleled those used in vitro and in vivo respectively. Measurements from the pendulum indicated that heel pad properties changed from those found in vitro to those found in vivo as relative motion of the bone and soft tissue was allowed. This would indicate that pendulum measures of the in vivo heel pad properties are also measuring the properties of the whole lower leg. The ability of the wobbling mass of the shank to dissipate energy during an impact was found to be significant. These results demonstrate the important role of both the heel pad and soft tissue of the shank to the dissipation of mechanical energy during impacts. These results provide a further clarification of the paradox between the measurements of heel pad properties made in vivo and in vitro

    Theory of preparation and relaxation of a p-orbital atomic Mott insulator

    Full text link
    We develop a theoretical framework to understand the preparation and relaxation of a metastable Mott insulator state within the first excited band of a 1D optical lattice. The state is loaded by "lifting" atoms from the ground to the first excited band by means of a stimulated Raman transition. We determine the effect of pulse duration on the accuracy of the state preparation for the case of a Gaussian pulse shape. Relaxation of the prepared state occurs in two major stages: double-occupied sites occurring due to quantum fluctuations initially lead to interband transitions followed by a spreading of particles in the trap and thermalization. We find the characteristic relaxation times at the earliest stage and at asymptotically long times approaching equilibrium. Our theory is applicable to recent experiments performed with 1D optical lattices [T. M\"uller, S. F\"olling, A. Widera, and I. Bloch, Phys. Rev. Lett. \textbf{99}, 200405 (2007)].Comment: 27 pages, 23 figures: Edited figures, added reference

    A Dual X-Ray Absorptiometry Validated Geometric Model for the Calculation of Body Segment Inertial Parameters of Young Females

    Get PDF
    The purpose of this study was to validate a new geometric solids model, developed to address the lack of female specific models for body segment inertial parameter estimation. A second aim was to determine the effect of reducing the number of geometric solids used to model the limb segments on model accuracy. The ‘full’ model comprised 56 geometric solids, the ‘reduced’ 31, and the ‘basic’ 16. Predicted whole-body inertial parameters were compared with direct measurements (reaction board, scales), and predicted segmental parameters with those estimated from whole-body DXA scans for 28 females. The percentage root mean square error (%RMSE) for whole-body volume was <2.5% for all models, and 1.9% for the full model. The %RMSE for whole-body center of mass location was <3.2% for all models. The %RMSE whole-body mass was <3.3% for the full model. The RMSE for segment masses was <0.5 kg (<0.5%) for all segments; Bland-Altman analysis showed the full and reduced models could adequately model thigh, forearm, foot and hand segments, but the full model was required for the trunk segment. The proposed model was able to accurately predict body segment inertial parameters for females, more geometric solids are required to more accurately model the trunk
    • …
    corecore